CSCE 689: Advanced Graph Algorithms

Lecture 1: Course Intro, Graph Basics

Date: August 25, 2022 Lecturer: Nate Veldt

1 Graph Basics, Max-flow and Min-cuts

1.1 Graph Notation and Terminology

An (undirected) graph G = (V, E) is defined by

An edge between	nodes i and j is denoted by	У

We can also denote an edge by _____

If $(i,j) \in E$, we say i and j are ______. The neighborhood of node i is the set of nodes adjacent to it:

The degree of i is the number of neighbors it has:

1.2 Basic graph classes

Simple graphs:

Two important generalizations

- Weighted:
- Directed:

Other simple types of graphs

1.3 Basic edge structures

• Triangle: set of three nodes that all share edges (also a size-3 cycle):

$$\{i, j, k\} \subseteq V$$
 such that $\{(i, j), (i, k), (j, k)\} \in E$

• Path: is a sequence of edges joining a sequence of vertices:

$$\{i_1, i_2, \dots i_k\} \subseteq V$$
 where $(i_1, i_2) \in E, (i_2, i_3) \in E, \dots, (i_{k-1}, i_k) \in E$.

• Matching: is a set of edges without common vertices

 $\mathcal{M} \subseteq E$ such that for all $e_i, e_j \in \mathcal{M}$ with $e_i \neq e_j, e_i \cap e_j = \emptyset$.

• Connected component: a maximal subgraph in which there is a path between every pair of nodes in the subgraph.

1.4 Node sets and cuts

For a set of nodes $S \subseteq V$ in a graph G = (V, E), its complement set is denoted by.

$$\bar{S} = V \backslash S = \{i \in V \colon i \notin S\}$$

The cut of S is a measure of the weight/number of edges crossing between S and \bar{S} .

1.5 Discrete Optimization over Graphs

Many graph analysis problems amount to optimizing an objective function over a graph.

Example 1 Shortest path. Given a source node $s \in V$ and target node $t \in V$, find the shortest path of edges between s and t.

Example 2 Maximum bipartite matching. Let G = (V, A, B) be a bipartite graph. Find a matching \mathcal{M} with maximum possible edge weight.

Two related problems that will come up repeatedly in this class are **Minimum** s-t **cuts** and **maximum** s-t **flow**.

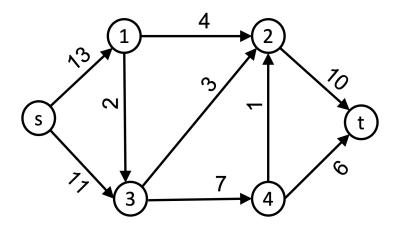
2 The Maximum s-t Flow Problem

Input to the Maximum s-t Flow Problem

- A weighted and directed graph G = (V, E, w)
- •
- •

Goal: Route as much "flow" through the graph from s to t as possible, such that:

- The flow on an edge is bounded by its weight
- The flow into a node is equal to the flow out of a node (except for s and t)



One interpretation/application: transporting products/merchandise as efficiently as possible through a transportation network.

3 Defining s-t flows more formally

Given a weighted graph G=(V,E,w), each $(u,v)\in E$ has a weight or *capacity* w(u,v)=c(u,v).

A flow on G is a function

$$f \colon E \to \mathbb{R}$$
 (1)

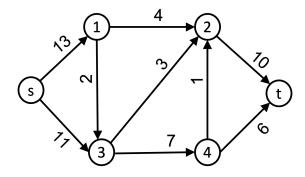
that satisfies two properties:

- 1. Capacity constraints: for each edge $(u, v) \in E$:
- 2. Flow constraints: for each node $v \notin \{s, t\}$

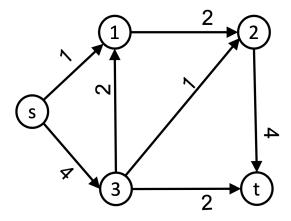
The value of a flow f is given by

$$|f| = \sum_{j: (s,j) \in E} f(s,j) - \sum_{u: (u,s) \in E} f(u,s)$$
 (2)

Formal goal: find the flow function f^* with maximum value $|f^*|$.



 ${\bf Question} \ {\bf 1} \ \ {\it What is the value of the flow f below?} \ {\it Is it a maximum flow?}$



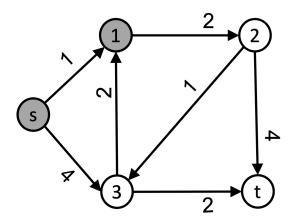
4 The minimum s-t cut problem

The minimum s-t cut problem takes the same type of input as the maximum s-t flow: a weighted directed graph G = (V, E, w).

An $s\text{-}t\ cut$ set is a set of nodes $S\subseteq V$ such that

The value of the cut is the weight of edges that cross from S to V-S. Formally:

What is the cut value below, where S is the set of gray nodes?



5 Relating minimum s-t cuts and maximum s-t flows

Lemma 3 Let G = (V, E, w) be a weighted directed graph. Let $S \subseteq V$ be any set with S be an s-t cut set, and let f be a flow. Then