
CSCE 689: Advanced Graph Algorithms

Lecture 2: Maximum s-t Flow

Date: August 30 Lecturer: Nate Veldt

Course Logistics

• Homework 1 has been posted, due on Tuesday, Sept 13 at 11:59pm

• Intro video assignment posted

• Can now access recorded lectures via Canvas, course materials through

veldt.engr.tamu.edu/689-fall22

1 Finding maximum s-t flow

Recap of our first idea. Repeatedly find paths from s to t, and keep adding flow

until there are no more s-t paths.

How do we correct this? Let’s try to keep track of flow that we could “undo”.

2 The Residual Graph

Given a flow f , for a pair of nodes (u, v) 2 V ⇥ V , the residual capacity for (u, v) is

cf (u, v) = c(u, v)� f(u, v) + f(v, u)

Informally, this is the amount of “space” left on the edge c(u, v), plus the amount of

flow from v to u that we could “undo”.
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Given a flow f for a graph G = (V,E,w), the residual graph Gf = (V,Ef ) is the graph

where the edge set

Ef = {(u, v) 2 V ⇥ V : cf (u, v) > 0}

This graph shows us where we can send more flow to improve on the flow f .

Activity: draw the residual graph for the following flow
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3 Augmenting Flows and Paths

Let f be an s-t flow in G = (V,E) and f
0
be a flow in the residual graph Gf = (V,Ef ).

Then we define the augmentation of f by f
0
as:

f " f 0
= f(u, v) + f

0
(u, v)� f

0
(v, u) (1)

Lemma 1. The function f " f 0 is a valid flow in G, and it has flow value |f |+ |f 0|.

Proof: a whole bunch of bookkeeping. We will skip this. But we can illustrate it below.
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An augmenting path p is a simple path (simple = no cycles) from s to t in the residual

network Gf .

The residual capacity of this path p is the maximum amount we can send on p:

cf (p) = min{cf (u, v) : (u, v) is in p}

Sending cf (p) flow along every edge in this path gives us a flow fp in Gf that we can

add to f to improve it.

Theorem 2. (Max-flow Min-cut Theorem) Let f be an s-t flow on some graph G =

(V,E). The following three conditions are equivalent:

1. f is a maximum s-t flow

2. There are no augmenting paths in the residual graph Gf

3. |f | = cut(S) for some s-t cut set in G
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4 The Basic Ford-Fulkerson Algorithm

Idea: f is a max-flow if and only if there are no augmenting paths. So let’s just keep

finding augmenting paths until we’re done!

The Ford-Fulkerson algorithm will always maintain the invariant that for any pair (u, v),

at most one of {f(u, v), f(v, u)} will be greater than zero.

FordFulkersonBasic(G, s, t)

for (u, v) 2 E do
f(u, v) = 0

while there exists an s-t path p in Gf do
cf (p) = min{cf (u, v) : (u, v) is in p}
for (u, v) 2 p do

m = min{cf (p), f(v, u)} // flow to “undo”

` = cf (p)�m // new flow to send along (u, v)

f(v, u) f(v, u)�m

f(u, v) f(u, v) + `

For (u, v) 2 p, we first use any of the flow cf (p) to undo flow previously sent on (v, u).

Then, if any of cf (p) remains, we send it along (u, v).
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5 Runtime Analysis

• f
⇤
is the maximum flow and |f⇤| the maximum flow value

• Assume all weights are integers.

• Let f be the flow we are growing as the algorithm progresses.

We need to answer the following questions:

1. What is the runtime complexity for finding an s-t path p in Gf?

2. What is the minimum amount by which we can increase f in each iteration?

3. What is the maximum number of paths we might have to find before we are done?

4. What is an overall runtime bound for FordFulkersonBasic?
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6 How bad can the runtime be in practice?
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7 The Edmonds-Karp Algorithm

The Edmonds-Karp Algorithm is a variation on Ford-Fulkerson that chooses an aug-

menting path p by finding the directed path from s to t with the smallest number of

edges. This is accomplished using a:

7.1 Shortest path distances increases monotonically

Let f be an s-t flow for input G = (V,E, s, t) and Gf be the residual graph. Define

�f (s, v) = the shortest unweighted path distance from s to v in Gf

Lemma 3. For every v 2 V , the distance �f (s, v) increases monotonically with each
flow augmentation.

Translation: as we keep finding augmenting paths p and sending more flow fp to f , the

distance between s and every node either stays the same, or increases.
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Theorem 4. The total number of flow augmentation steps performed by Edmonds-Karp
is O(V E).

Proof. • Let p be an augmenting path in Gf .

• An edge (u, v) 2 p is critical if cf (p) = cf (u, v), meaning it is the smallest capacity

edge in that path.

• When we push cf (p) flow through p, the edge (u, v) disappears from Gf

• At least one edge on each path p is critical.

• Claim: Each of the |E| edges can be critical at most |V |/2 times.
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Proving the claim: (u,v) becomes critical at most |V |/2 times.

• Let u and v be nodes in some edge in E.

• When (u, v) is critical for the first time, �f (s, v) = �f (s, u) + 1

Why?

• Then (u, v) disappears from the residual graph, and can only re-appear after (v, u)

is on some future augmenting path. Say that (v, u) is on an augmenting path when

the new flow on G is f
0
, then

�f 0(s, u) =

• We know that �f (s, v)  �f 0(s, v)

• So we have

�f 0(s, u) =

• From the first to the second time (u, v) becomes critical, the distance from s to u

increases by at least 2.

• If (u, v) becomes critical more than |V |/2 times, then the distance from s to u

would be greater than |V |� 2.

• Thus, (u, v) becomes critical at most |V |/2 = O(V ) times.
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