CSCE 689: Advanced Graph Algorithms
Lecture 2: Maximum s-t Flow
Date: August 30 Lecturer: Nate Veldt

Course Logistics
e Homework 1 has been posted, due on Tuesday, Sept 13 at 11:59pm
e Intro video assignment posted
e Can now access recorded lectures via Canvas, course materials through

veldt.engr.tamu.edu/689-fall22

1 Finding maximum s-t flow

Recap of our first idea. Repeatedly find paths from s to ¢, and keep adding flow
until there are no more s-t paths.

How do we correct this? Let’s try to keep track of flow that we could “undo”.

2 The Residual Graph

Given a flow f, for a pair of nodes (u, v) € V x V, the residual capacity for (u,v) is
-

cr(u,v) = c(u,v) — f(u,v) + f(v,u)

—_— e

Informally, this is the amount of “space” left on the edge ¢(u,v), plus the amount of
flow from v to uw that we could “undo”.

Tarfu/% we wll oM’J haNA one 07[7
£ plav) , Fludd P 1FTE

3 | 7

' @’ 0

(null)://(null)veldt.engr.tamu.edu/689-fall22

Given a flow f for a graph G = (V, E,w), the residual graph Gy = (V, Ey) is the graph
where the edge set —

E; = {(we V xV:cs(u,v) >0}

This graph shows us where we can send more flow to improve on the flow f.

Activity: draw the residual graph for the following flow
K & idea : A (u,v) €€
Jhen 7\1,;,,[about Aonl

(wo) and (vv) ey
3/4 Fnzscvﬁ' in G_F

(pestly with capaciy 0)

3 Augmenting Flows and Paths

Let f be an s-t flow in G = (V, E) and f/ be a flow in the residual graph Gy = (V, Ey).
Thén we define the augmentation of f by f' as:

A -
f: ‘ﬁ/:]'i(u’v)"’_f/(uvv)_f/v (1)

Lemma 1. The function f 1 f' is a valid flow in G, and it has flow value |f| + |f].

— — ———

Proof: a whole bunch of bookkeeping. We will skip this. But we can illustrate it below.

4/4

3/4

An augmenting path p is a simple path (simple = no cycles) from s to ¢ in the residual
network G'y.
-

The residual capacity of this path p is the maximum amount we can send on p:
R ——

CL(Q = min{cs(u,v): (u,v) is in p}

Sending cy(p) flow along every edge in this path gives us a flow f, in Gy that we can
add to f to improve it. —

Theorem 2. (Maz-flow Min-cut Theorem) Let f be an s-t flow on some graph G =
(V, E). The following three conditions are equivalent:

1. f is a maximum s-t flow
<2. There are no augmenting paths in the residual graph Gy

3. | f| = cut(S) for some s-t cut set in G
R —

Procf: (VD R) If 6 hd 47 .ym,l:a/ path,
/:;f; Piow F' hen Lemma /’ we cold Bod

A . - | Fl

A oW = #10/ /71 '?‘ hc,')’ If |7 L_

@) wf; e f = (Contrwetichn) ™
Lt% S be ﬁ‘(set o'ﬂ nodes reachsble 740»*'

—

@ " @p. In G w }{nau/

Cu‘/’(s): Z ¢ (wv)

) “,% as
UES VES

p"‘d dff" (uv) €3S must be Sa fusated éy
‘P or else Cutu} would be¢ an e,o(#e N
6

Further move | €very &0‘3% (viu)EE witn veS
and (AéS mast have Z’MD 7D/ow on ’76

(uv) woud be an cdoe n é -

or elcc

So ‘ﬁw ne‘/' "Qé?w oACVOSS cu‘vL 85

sy
\Pl '/D(M, u) — ka
/! (aye€

nes vesS
= 2) = cut(s) /
(u) €5 ()0)

(3)2) (1) k) 2 WL for any

sl‘(' W S sV aw\p(#[ﬂl»/‘ So /(7£ coh f’({) = Lf//

fen P wnit bt makimited,

4 The Basic Ford-Fulkerson Algorithm

Idea: f is a max-flow if and only if there are no augmenting paths. So let’s just keep
finding augmenting paths until we’re done!

The Ford-Fulkerson algorithm will always maintain the invariant that for any pair (u, v),
at most one of {f(u,v), f(v,u)} will be greater than zero.

FORDFULKERSONBASIC(G, s, t)
for (u,v) € E do
flu,v) =0
whlle there exists an_s-t path p in G¢ do

u
= mm{Cf(u v): (u,v) is in p} “weakes? 114 link

for (u,v) € p do
m = mln{Cf(), flv,u)} // flow to “undo”
K = Cf -m K // new flow to send along (u,v)
v,u <—f(v u) —m

(u,v) +¢

(u,v) « f

For (u,v) € p, we first use any of the flow c¢(p) to undo flow previously sent on (v, u).

5 Runtime Analysis (Xﬁ)

e f*is the maximum flow and |f*| the maximum flow value
— ——
e Assume all weights are integers.
—

e Let f be the flow we are growing as the algorithm progresses.
——

We need to answer the following questions:

1. What is the runtime complexity for finding an s-t path p in G 7

2. What is the minimum amount by which we can increase f in each iteration? ‘
3. What is the maximum number of paths we might have to find before we are done?
W

4. What is an overall runtime bound for FORDFULKERSONBASIC?

ol €)

/\

6 How bad can the runtime be in practice?

7 The Edmonds-Karp Algorithm

The Edmonds-Karp Algorithm is a variation on Ford-Fulkerson that chooses an aug-
menting path p by finding the directed path from s to ¢ with the smallest number of

BFS

edges. This is accomplished using a:

7.1 Shortest path distances increases monotonically
Let f be an s-t flow for input G = (V, E, s,t) and G be the residual graph. Define

—

d¢(s,v) = the shortest unweighted path distance from s to v in G
— ———

For every v € V, the distance 07(s,v) increases monotonically with each
flow augmentation.

Translation: as we keep finding augmenting paths p and sending more flow f, to f, the
distance between s and every node either stays the same, or increases.

‘(é Di’('):(s,f)
—) e
Koo T'\>

Q)" 1

W p

Tobl rucdme will be O (VE)

#
ne If l
Theorem 4. The total number of flow augmentation steps performed by Edmonds-Karp
is O(VE). .
—

Proof. e Let p be an augmenting path in G.
- —

e Anedge (u,v) € pis critical if cf(p) = ¢f(u,v), meaning it is the smallest capacity

edge in that path. !
™ WW Link "

e When we push c¢(p) flow through p, the edge (u,v) disappears from G¢
—

Otherwie + was ot The wealurt LK.

e At least one edge on each path p is critical.

e Claim: Each of the |E| edges can be critical at most |V|/2 times.
— ——

EE————

T we frove The c[a/ml M are Jdone. M
neak
There avfe lEl Qolﬁcs L each can be cnl‘(>

’ Fegation.
049{ at I.UIS')’ one /$ cn'l‘al (" each ;ILC/“

| mﬁ’amS,
IF fire ane wont Ther [E[%i[f

La ?\\a-QOV‘ ho)t Pn‘murlc‘ ont eo[a_e wal onki‘m{

met Than JV/‘ fmes, wn‘)fad(‘cﬁ""ﬂ'
[Z

€l Y = oldw)y Herakors

O

10

C“)v) s A

Proving the claim: (u,v) becomes critical at most |V|/2 times. e m(/‘l M
e Let u and v be nodes in some edge in F. C
—— & (4”/ U) ef or
e When (u,v) is critical for the first time, §¢(s,v) = d(s,u) + 1 év“ﬂ) ef .
e —

Why? Becaw L A//JW J&W&f’L w
* pahs o

e Then (u,v) disappears from the residual graph, and can only re-appear after (v.u)
is on some future augmenting path. Say that (v, u) is on an augmenting path when
the new flow on G is f/, then

s ;W - Spelsd+ |
e We know that d¢(s,v) < dp(s,v) La LMMA s

e So we have

p(s,u) = S{,((Q,v)fl 2 SE(S(\')‘} l :8}[5\/"‘)"'1

e From the first to the second time (u,v) becomes critical, the distance from s to u
—— e—— — —

increases by at least 2,

e If (u,y) becomes critical more than [V|/2 times, then the distance from s to u
would be greater than |V| — 2.
——

o edicht?: To an /tesakon where (klu) i’
on a cliteat ‘?anv‘ he ditance from € o w &a
be af mosT |VI-A.

e Thus, (u,v) becomes critical at most |V|/2 = O(V) times.
————————

11

