#### CSCE 689: Advanced Graph Algorithms

Lecture 2: Maximum s-t Flow

Date: August 30

Lecturer: Nate Veldt

#### **Course Logistics**

- Homework 1 has been posted, due on Tuesday, Sept 13 at 11:59pm
- Intro video assignment posted
- Can now access recorded lectures via Canvas, course materials through veldt.engr.tamu.edu/689-fall22

#### **1** Finding maximum *s*-*t* flow

**Recap of our first idea.** Repeatedly find paths from s to t, and keep adding flow until there are no more s-t paths.



How do we correct this? Let's try to keep track of flow that we could "undo".

#### 2 The Residual Graph

Given a flow f, for a pair of nodes  $(u, v) \in V \times V$ , the *residual capacity* for (u, v) is

$$c_f(u, v) = c(u, v) - f(u, v) + f(v, u)$$

Informally, this is the amount of "space" left on the edge c(u, v), plus the amount of flow from v to u that we could "undo".



Given a flow f for a graph G = (V, E, w), the residual graph  $G_f = (V, E_f)$  is the graph where the edge set

$$E_f = \{(\underline{u}, \underline{v}) \in V \times V \colon c_f(u, \underline{v}) > 0\}$$

This graph shows us where we can send more flow to improve on the flow f.

Activity: draw the residual graph for the following flow



### 3 Augmenting Flows and Paths

Let f be an s-t flow in G = (V, E) and f' be a flow in the residual graph  $G_f = (V, E_f)$ . Then we define the *augmentation* of f by f' as:

$$f = f \uparrow f' = f(u, v) + f'(u, v) - f'(v, v)$$
(1)

**Lemma 1.** The function  $f \uparrow f'$  is a valid flow in G, and it has flow value |f| + |f'|.

Proof: a whole bunch of bookkeeping. We will skip this. But we can illustrate it below.









An augmenting path p is a simple path (simple = no cycles) from s to t in the residual network  $G_f$ .

The *residual capacity* of this path p is the maximum amount we can send on p:

 $c_f(p) = \min\{c_f(u, v) \colon (u, v) \text{ is in } p\}$ 

Sending  $c_f(p)$  flow along every edge in this path gives us a flow  $f_p$  in  $G_f$  that we can add to f to improve it.

**Theorem 2.** (Max-flow Min-cut Theorem) Let  $\underline{f}$  be an s-t flow on some graph  $\underline{G} = (V, E)$ . The following three conditions are equivalent:

a 1. f is a maximum s-t flow

2. There are no augmenting paths in the residual graph  $G_f$ 

▶ 3. |f| = cut(S) for some s-t cut set in G

Proof: (1)=)(2) If Gf had an anymenting path, with flow f' then by Lemma 1, we could find a flow  $\hat{f} = f + f'$  with  $|\hat{f}| = |f| + |f'| > |f|$ (Contradiction) (2) => (3) Let S be the set of nodes reachable from S in Gf. In G we Know  $cut(s) = \sum_{\substack{(u,v) \in E \\ u \in S, v \in S}} c(u,v)$ edge (u,v) & 25 must be saturated else (u,v) would be an edge Any

Furthermore, every edge (v,u) EE with vES ) and uses must have zero flow on it, ) or else (uiv) would be an edge in Eq. So the net flow across cut 25  $\begin{aligned} & If I = \sum f(u, v) - \sum f(u, v) \\ & If I = \sum (u, v) \in E \\ & u \in S, v \in S \\ \end{aligned}$  $= \sum c(u,v) = cut(s) V$  $(u,v)\in 2S$  (z)=)(z)

(3)=)(1) cut(s) = IFL for any st set SSU and Flow, so if cut(s)=LFL, then IFL must be maximized.

#### 4 The Basic Ford-Fulkerson Algorithm

Idea: f is a max-flow if and only if there are no augmenting paths. So let's just keep finding augmenting paths until we're done!

The Ford-Fulkerson algorithm will always maintain the invariant that for any pair (u, v), at most one of  $\{f(u, v), f(v, u)\}$  will be greater than zero.

FORDFULKERSONBASIC(G, s, t) for  $(u, v) \in E$  do f(u, v) = 0while there exists an *s*-*t* path *p* in  $G_f$  do  $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}$  weakest link " for  $(u, v) \in p$  do  $m = \min\{c_f(p), f(v, u)\}$  // flow to "undo"  $\ell = c_f(p) - m$   $f(v, u) \leftarrow f(v, u) - m$  $f(u, v) \leftarrow f(u, v) + \ell$ 

For  $(u, v) \in p$ , we first use any of the flow  $c_f(p)$  to undo flow previously sent on (v, u).

Then, if any of 
$$c_f(p)$$
 remains, we send it along  $(u,v)$ .  

$$F = \frac{3}{2} \frac{15}{10} \frac{10}{10} \frac$$

# 5 Runtime Analysis

O(E)

 $H^{\star}$ 

- $f^*$  is the maximum flow and  $|f^*|$  the maximum flow value
- Assume all weights are integers.
- Let f be the flow we are growing as the algorithm progresses.

We need to answer the following questions:

1. What is the runtime complexity for finding an s-t path p in  $G_f$ ?

# OLE) LBFS)

- 2. What is the minimum amount by which we can increase f in each iteration?
- 3. What is the maximum number of paths we might have to find before we are done?
- 4. What is an overall runtime bound for FORDFULKERSONBASIC?



6 How bad can the runtime be in practice?



# 7 The Edmonds-Karp Algorithm

The Edmonds-Karp Algorithm is a variation on Ford-Fulkerson that chooses an augmenting path p by finding the directed path from s to t with the smallest number of edges. This is accomplished using a:



#### 7.1 Shortest path distances increases monotonically

Let f be an s-t flow for input G = (V, E, s, t) and  $G_f$  be the residual graph. Define

 $\delta_f(s, v) =$  the shortest unweighted path distance from s to v in  $G_f$ 

**Lemma 3** For every  $v \in V$ , the distance  $\delta_f(s, v)$  increases monotonically with each flow augmentation.

Translation: as we keep finding augmenting paths p and sending more flow  $f_p$  to f, the distance between s and every node either stays the same, or increases.



# Total runtime will be $O(VE^2)$ no $IF^*I$

**Theorem 4.** The total number of flow augmentation steps performed by Edmonds-Karp is O(VE).

*Proof.* • Let p be an augmenting path in  $G_f$ .

- An edge  $(u, v) \in p$  is *critical* if  $c_f(p) = c_f(u, v)$ , meaning it is the smallest capacity edge in that path. weaket Link "
- When we push  $\underline{c_f(p)}$  flow through p, the edge  $\underline{(u,v)}$  disappears from  $\underline{G_f}$

.

- At least one edge on each path p is critical.
- Claim: Each of the |E| edges can be critical at most |V|/2 times.

If we prove the claim, we are done.  
There are 
$$|E|$$
 edges, each can be critical  $\frac{|V|}{2}$ ,  
and at least one is critical in each iteration.  
If there are more than  $|E| \cdot \frac{|V|}{2}$  iterations,  
by pigeonhole principle, one edge was critical  
more than  $\frac{|V|}{2}$  times, contradiction.  
 $\frac{|V|}{2}$ 

**Proving the claim**: (u,v) becomes critical at most |V|/2 times.

- Let u and v be nodes in some edge in E.
- When (u, v) is critical for the first time,  $\delta_f(s, v) = \delta_f(s, u) + 1$

Why? Because me follow shortest paths

• Then (u, v) disappears from the residual graph, and can only re-appear after (v, u) is on some future augmenting path. Say that (v, u) is on an augmenting path when the new flow on G is f', then

• We know that 
$$\delta_f(s,v) \leq \delta_{f'}(s,v)$$
 by Lemma 3

• So we have

$$\delta_{f'}(s,u) = \mathsf{S}_{\mathsf{f}^{(s,v)}} + \mathsf{I} \geq \underbrace{\mathsf{S}_{\mathsf{f}^{(s,v)}}}_{\mathsf{f}^{(s,v)}} + \mathsf{I} = \mathsf{S}_{\mathsf{f}^{(s,v)}} + \mathsf{I}$$

- From the first to the second time (u, v) becomes critical, the distance from s to u increases by at least 2.
- If (<u>u, v)</u> becomes critical more than |V|/2 times, then the distance from <u>s</u> to <u>u</u> would be greater than |V|-2.
   <u>Contradiction</u>. In an iteration where (u, ...) is on a clitical path, the distance from s to u can
- Thus, (u, v) becomes critical at most |V|/2 = O(V) times.

be at most 1V1-2.

(n,v)

pair such that (n,v) EF or (v,n) EF.

Representing a graph by a matrix The adjacency matrix A of a weighted directed graph G with n nodes is an nen matrix where

