

Dense Subgraph Discovery
Sept 20, 2022
Advanced Graph Algorithms

Finding a dense subgraph is a fundamental graph mining primitive

Applications

- detecting DNA motifs
- finding modules in gene co-expression data
- identifying trending topics in social media

Objectives

- maximum clique
- densest subgraph
- k-core
- k-truss
- clique
- quasi-clique
- nucleus decompositions

The densest subgraph problem is one of the most common objectives

Densest Subgraph Problem

Maximize the ratio between number of nodes and number of edges.

number of edges between S nodes

$$\max_{S\subseteq V} \frac{|E(S)|}{|S|} = \frac{1}{2} \frac{\sum_{v\in S} d_v(S)}{|S|}$$

Equivalently: max average degree

Find subgraph S with maximum average (induced) degree

 $d_v(S) = degree \ of \ v \ in \ induced \ subgraph$

The k-core is another common objective

k-core

Maximal subgraph where all nodes have induced degree at least k

degeneracy

maximum k such that k-core is nonempty

We'll cover a few techniques for solving these problems

Exact algorithms based on minimum s-t cuts

Algorithms based on "peeling"

Exact algorithms based on linear programming

Peeling algorithms provide a fast way to approximate these objectives

GreedyPeel: repeatedly remove the minimum degree node from the graph.

Guarantees.

One of the subgraphs will be a 1/2-approx for densest subgraph [Charikar 2000].

One of the subgraphs returned will be the k-core, with k = degeneracy [Matula & Beck 1983].