• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Home
  • News
  • Research
  • Publications
  • Teaching
  • Videos

Nate Veldt

Texas A&M University College of Engineering

Publications

This page may not be updated. See my CV or google scholar page for updated information.

Last update: April 2, 2025

Peer-reviewed Publications

  1. Combinatorial Approximations for Cluster Deletion: Simpler, Faster, and Better
    Vicente Balmaseda, Ying Xu, Yixin Cao, Nate Veldt
    ICML 2024
  2. Densest Subhypergraph: Negative Supermodular Functions and Strongly Localized Methods
    Yufan Huang, David F. Gleich, Nate Veldt
    WebConf 2024
  3. Overlapping and Robust Edge-Colored Clustering in Hypergraphs
    Alex Crane, Brian Lavallee, Blair D. Sullivan, Nate Veldt
    WSDM 2024
  4. Growing a Random Maximal Independent Set Produces a 2-approximate Vertex Cover
    Nate Veldt
    SOSA 2024
  5. Seven open problems in applied combinatorics
    Sinan G. Aksoy, Ryan Bennink, Yuzhou Chen, Jos´e Fr´ıas, Yulia R. Gel, Bill Kay, Uwe Naumann, Carlos Ortiz Marrero, Anthony V. Petyuk, Sandip Roy, Ignacio Segovia-Dominguez, Nate Veldt, Stephen J. Young
    Journal of Combinatorics, April 2023
    Paper
  6. Faster Approximation Algorithms for Parameterized Graph Clustering and Edge Labeling
    Vedangi Bengali, Nate Veldt
    CIKM 2023
  7. Optimal LP Rounding and Fast Combinatorial Algorithms for Clustering Edge-Colored Hypergraphs
    Nate Veldt
    ICML 2023
  8. Augmented Sparsifiers for Generalized Hypergraph Cuts
    Austin R. Benson, Jon Kleinberg, Nate Veldt,
    JMLR, 2023
  9. Cut-matching Games for Generalized Hypergraph Cuts
    Nate Veldt
    Proceedings of the 2023 World Wide Web Conference, May 2023
    Preprint
  10. Combinatorial characterizations and impossibilities for higher-order homophily
    Nate Veldt, Austin R. Benson, Jon Kleinberg
    Science Advances, 2023 
    Paper, arXiv preprint
  11. Hypergraph Cuts with General Splitting Functions
    Nate Veldt, Austin R. Benson, Jon Kleinberg
    SIAM Review, 2022
    Paper, arXiv Preprint
  12. Correlation Clustering via Strong Triadic Closure Labeling: Fast Approximation Algorithms and Practical Lower Bounds
    Nate Veldt
    Proceedings of the 2022 International Conference on Machine Learning, July 2022
    Paper, arXiv preprint
  13. fauci-email: a json digest of Anthony Fauci’s released emails
    Austin R. Benson, Nate Veldt, David Gleich
    International Conference on Web and Social Media, June 2022
    Paper , arXiv preprint, dataset, 5-minute video
  14. Hypergraph Clustering for Diverse and Experienced Groups
    Ilya Amburg, Nate Veldt, and Austin R. Benson
    SIAM International Conference on Data Mining, April 2022
    Paper, arXiv preprint
  15. Approximate Decomposable Submodular Function Minimization for Cardinality-Based Components
    Nate Veldt, Austin R. Benson, Jon Kleinberg
    Advances in Neural Information Processing Systems, December 2021
    Paper
  16. The Generalized Mean Densest Subgraph Problem
    Nate Veldt, Austin R. Benson, Jon Kleinberg
    SIGKDD Conference on Knowledge Discovery and Data Mining, August 2021
    Paper
  17. Generative hypergraph clustering: from blockmodels to modularity
    Philip S. Chodrow, Nate Veldt, Austin R. Benson
    Science Advances, July 2021
    Paper 
  18. Strongly Local Hypergraph Diffusions for Clustering and Semi-supervised Learning
    Meng Liu, Nate Veldt, Haoyu Song, Pan Li, and David F. Gleich
    Proceedings of the 2021 World Wide Web Conference, May 2021
    Paper, arXiv preprint
  19. Graph Clustering in All Parameter Regimes
    Junhao Gan, David F. Gleich, Nate Veldt, Anthony Wirth, Xin Zhang
    International Symposium on Mathematical Foundations of Computer Science, August 2020
    Paper, arXiv preprint
  20. Minimizing Localized Ratio Cut Objectives in Hypergraphs
    Nate Veldt, Austin R. Benson, Jon Kleinberg
    SIGKDD Conference on Knowledge Discovery and Data Mining, August 2020
    Preprint, Three minute video, Video Presentation
  21. Parameterized Correlation Clustering in Hypergraphs and Bipartite Graphs
    Nate Veldt, Anthony Wirth, David F. Gleich
    SIGKDD Conference on Knowledge Discovery and Data Mining, August 2020
    Preprint, Three-minute Video, Behind-the-scenes video
  22. Clustering in Graphs and Hypergraphs with Categorical Edge Labels
    Ilya Amburg, Nate Veldt, and Austin R. Benson
    Proceedings of the 2020 World Wide Web Conference, May 2020
    Paper
  23. A Parallel Projection Method for Metric-Constrained Optimization
    Cameron Ruggles, Nate Veldt, and David F. Gleich
    SIAM Workshop on Combinatorial Scientific Computing, February 2020
    Paper
  24. Metric-Constrained Optimization for Graph Clustering Algorithms
    Nate Veldt, David F. Gleich, Anthony Wirth and James Saunderson
    SIAM Journal on Mathematics of Data Science, June 2019
    Paper
  25. Learning Resolution Parameters for Graph Clustering
    Nate Veldt, David F. Gleich, and Anthony Wirth
    Proceedings of the 2019 World Wide Web Conference, May 2019
    Paper
  26. Flow-Based Local Graph Clustering with Better Seed Set Inclusion
    Nate Veldt, Christine Klymko, and David F. Gleich
    Proceedings of the 2019 SIAM International Conference on Data Mining, May 2019
    Paper
  27. Correlation Clustering Generalized
    David F. Gleich, Nate Veldt, and Anthony Wirth
    Proceedings of the 29th International Symposium on Algorithms and Computation, December 2018
    Paper, Full Version
  28. A Correlation Clustering Framework for Community Detection
    Nate Veldt, David F. Gleich, and Anthony Wirth
    Proceedings of the 27th International World Wide Web Conference, April 2018
    Paper, Full Version
  29. Low-Rank Spectral Network Alignment
    Huda Nassar, Nate Veldt, Shahin Mohammadi, Ananth Grama, David F. Gleich
    Proceedings of the 27th International World Wide Web Conference, April 2018
    Paper
  30. Correlation Clustering with Low-Rank Matrices
    Nate Veldt, Anthony Wirth, and David F. Gleich
    Proceedings of the 26th International World Wide Web Conference, April 2017
    Paper, Full Version
  31. A Simple and Strongly Local Flow-Based Method for Cut Improvement
    Nate Veldt, David F. Gleich, and Michael Mahoney
    Proceedings of the 33rd Annual International Conference on Machine Learning, June 2016
    Paper, Video Presentation

PhD Thesis

  1. Optimization Frameworks for Graph Clustering
    Nate Veldt
    Purdue University PhD Thesis, 2019
    pdf, Video Presentation

 

© 2016–2025 Nate Veldt Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • Facebook
  • Twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment